
Random sequential addition of hard spheres in high Euclidean dimensions

S. Torquato*
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA;

Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA;
Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA;

and Princeton Center for Theoretical Physics, Princeton University, Princeton, New Jersey 08544, USA

O. U. Uche
Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544, USA

F. H. Stillinger
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA

�Received 17 August 2006; published 20 December 2006�

Sphere packings in high dimensions have been the subject of recent theoretical interest. Employing numeri-
cal and theoretical methods, we investigate the structural characteristics of random sequential addition �RSA�
of congruent spheres in d-dimensional Euclidean space Rd in the infinite-time or saturation limit for the first six
space dimensions �1�d�6�. Specifically, we determine the saturation density, pair correlation function, cu-
mulative coordination number and the structure factor in each of these dimensions. We find that for
2�d�6, the saturation density �s scales with dimension as �s=c1 /2d+c2d /2d, where c1=0.202 048 and
c2=0.973 872. We also show analytically that the same density scaling is expected to persist in the high-
dimensional limit, albeit with different coefficients. A byproduct of this high-dimensional analysis is a rela-
tively sharp lower bound on the saturation density for any d given by �s� �d+2��1−S0� /2d+1, where S0

� �0,1� is the structure factor at k=0 �i.e., infinite-wavelength number variance� in the high-dimensional limit.
We demonstrate that a Palàsti-type conjecture �the saturation density in Rd is equal to that of the one-
dimensional problem raised to the dth power� cannot be true for RSA hyperspheres. We show that the structure
factor S�k� must be analytic at k=0 and that RSA packings for 1�d�6 are nearly “hyperuniform.” Consistent
with the recent “decorrelation principle,” we find that pair correlations markedly diminish as the space dimen-
sion increases up to six. We also obtain kissing �contact� number statistics for saturated RSA configurations on
the surface of a d-dimensional sphere for dimensions 2�d�5 and compare to the maximal kissing numbers
in these dimensions. We determine the structure factor exactly for the related “ghost” RSA packing in Rd and
demonstrate that its distance from “hyperuniformity” increases as the space dimension increases, approaching
a constant asymptotic value of 1 /2. Our work has implications for the possible existence of disordered classical
ground states for some continuous potentials in sufficiently high dimensions.
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I. INTRODUCTION

We call a collection of congruent spheres in d-dimen-
sional Euclidean space Rd a hard-sphere packing if no
two spheres overlap. The study of the structure and macro-
scopic properties of hard spheres in physical dimensions
�d=2 or 3� has a rich history, dating back to at least the work
of Boltzmann �1�. Hard-sphere packings have been used to
model a variety of systems, including liquids �2�, amorphous
and granular media �3�, and crystals �4�. There has been re-
surgent interest in hard-sphere packings in dimensions
greater than three in both the physical and mathematical sci-
ences. For example, it is known that the optimal way of
sending digital signals over noisy channels corresponds to
the densest sphere packing in a high dimensional space �5�.
These “error-correcting” codes underlie a variety of systems
in digital communications and storage, including compact
disks, cell phones and the Internet. Physicists have studied

hard-sphere packings in high dimensions to gain insight into
ground and glassy states of matter as well as phase behavior
in lower dimensions �7–10�. The determination of the dens-
est packings in arbitrary dimension is a problem of long-
standing interest in discrete geometry �5,6,11�.

The packing density or simply density � of a sphere pack-
ing is the fraction of space Rd covered by the spheres, i.e.,

� = �v1�R� , �1�

where � is the number density,

v1�R� =
�d/2

��1 + d/2�
Rd �2�

is the volume of a d-dimensional sphere of radius R, and
��x� is the gamma function. We call

�max = sup
P�Rd

��P� �3�

the maximal density, where the supremum is taken over all
packings in Rd. The sphere packing problem seeks to answer*Electronic address: torquato@electron.princeton.edu
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the following question: Among all packings of congruent
spheres, what is the maximal packing density �max, i.e., larg-
est fraction of Rd covered by the spheres, and what are the
corresponding arrangements of the spheres �5,6�? For
d=1,2, and 3, the optimal solutions are known �12�. For
3�d�10, the densest known packings of congruent spheres
are Bravais lattice packings �5�, but in sufficiently large di-
mensions the optimal packings are likely to be non-Bravais
lattice packings. Upper and lower bounds on the maximal
density �max exist in all dimensions �5�. For example,
Minkowski �13� proved that the maximal density �max

L

among all Bravais lattice packings for d�2 satisfies the
lower bound

�max
L �

	�d�
2d−1 , �4�

where 	�d�=�k=1

 k−d is the Riemann zeta function. It is seen

that for large values of d, the asymptotic behavior of the
nonconstructive Minkowski lower bound is controlled by
2−d. Note that the density of a saturated packing of congru-
ent spheres in Rd for all d satisfies

� �
1

2d , �5�

which has the same dominant exponential term as �4�. A
saturated packing of congruent spheres of unit diameter and
density � in Rd has the property that each point in space lies
within a unit distance from the center of some sphere. This is
a rather weak lower bound on the density of saturated pack-
ings because there exists a disordered but unsaturated pack-
ing construction, known as the “ghost” random sequential
addition packing �14�, that achieves the density 2−d in any
dimension. �Among other results, we show in this paper that
there are saturated packings in Rd with densities that exceed
the scaling 2−d.� In the large-dimensional limit, Kabatiansky
and Levenshtein �15� showed that the maximal density is
bounded from above according to the asymptotic upper
bound

�max �
1

20.5990 d . �6�

The present paper is motivated by some recent work on
disordered sphere packings in high dimensions �14,16�. In
Ref. �14�, we introduced a generalization of the well-known
random sequential addition �RSA� process for hard spheres
in d-dimensional Euclidean space Rd. This model can be
viewed as a special “thinning” of a Poisson point process
such that the subset of points at the end of the thinning
process corresponds to a sphere packing. One obvious rule is
to retain a test sphere at time t only if it does not overlap a
sphere that was successfully added to the packing at an ear-
lier time. This criterion defines the standard RSA process in
Rd �3,17�, which generates a homogeneous and isotropic
sphere packing in Rd with a time-dependent density ��t�. In
the limit t→
, the RSA process corresponds to a saturated
packing with a maximal or saturation density ��
�
� limt→
 ��t� �18�. In one dimension, the RSA process is
commonly known as the “car parking problem,” which Re-

ńyi showed has a saturation density ��
�=0.747 598. . . �19�.
For 2�d�
, an exact determination of ��
� is not pos-
sible, but estimates for it have been obtained via computer
experiments in two dimensions �circular disks� �20,22� and
three dimensions �spheres� �23,24�. However, estimates of
the saturation density ��
� in higher dimensions have here-
tofore not been obtained.

Another thinning criterion retains a test sphere centered of
diameter D centered at position r at time t if no other test
sphere is within a radial distance D from r for the time
interval �t prior to t, where � is a positive constant in the
closed interval �0,1�. We have termed this the generalized
RSA process �14�. This packing, for any � in the open inter-
val �0,1�, is a subset of the standard RSA packing, and is
always unsaturated, even in the infinite-time limit. Note that
when �=0, the standard RSA process is recovered, and when
�=1, we obtain the “ghost” RSA process �14�, which is ame-
nable to exact analysis. In particular, we showed that the
n-particle correlation function gn�r1 ,r2 , . . . ,rn� for the ghost
RSA packing can be obtained analytically for any n, all al-
lowable densities and in any dimension. This represents the
first exactly solvable disordered sphere-packing model in ar-
bitrary dimension. For statistically homogeneous packings in
Rd, these correlation functions are defined so that
�ngn�r1 ,r2 , . . . ,rn� is proportional to the probability density
for simultaneously finding n particles at locations
r1 ,r2 , . . . ,rn within the system, where � is the number den-
sity. Thus, in a packing without long-range order, each gn
approaches unity when all particle positions become widely
separated within Rd, indicating no spatial correlations. Inter-
estingly, the infinite-time or maximal density ��
� of the
ghost RSA packing in Rd equals 2−d, which is identical to the
so-called greedy lower bound �5� for any saturated packing.
This result suggests that the lower bound �5� can be im-
proved for a saturated packing since the ghost RSA packing
is unsaturated. This in turn implies that it is likely that there
exist disordered sphere packings in sufficiently high d whose
density exceeds Minkowski’s lower bound �4�.

Indeed, in Ref. �16�, a conjectural lower bound on the
density of disordered sphere packings �21� was employed to
provide the putative exponential improvement on Minkows-
ki’s 100-year-old bound. There is strong evidence to support
the conjecture �concerning the existence of disordered pack-
ings� that led to this bound �see Sec. V for details�. The
asymptotic behavior of the conjectural lower bound is con-
trolled by 2−�0.778 65. . .�d. Moreover, this lower bound always
lies below the density of the densest known packings for 3
�d�56, but, for d�56, it can be larger than the density of
the densest known arrangements, all of which are ordered.
These results counterintuitively suggest that the densest
packings in sufficiently high dimensions may be disordered
rather than periodic, implying the existence of disordered
classical ground states for some continuous potentials.

In addition, a decorrelation principle for disordered pack-
ings was identified �16�, which states that unconstrained cor-
relations in disordered sphere packings vanish asymptoti-
cally in high dimensions and that the gn for any n�3 can be
inferred entirely �up to some small error� from a knowledge
of the number density � and the pair correlation function
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g2�r�. This decorrelation principle is vividly exhibited in the
aforementioned ghost RSA process �14�. At first glance, one
might be tempted to conclude that the decorrelation principle
is an expected “mean-field” behavior, which is not the case.
For example, it is well known that in some spin systems
correlations vanish in the limit d→
 and the system ap-
proaches the mean-field behavior. While this notion is mean-
ingful for spin systems with attractive interactions, it is not
for hardcore systems. The latter is characterized by a total
potential energy that is either zero or infinite, and thus cannot
be characterized by a mean field. Furthermore, mean-field
theories are limited to equilibrium considerations, and thus
do not distinguish between “constrained” and “uncon-
strained” correlations that arise in nonequilibrium packings
of which there are an infinite number of distinct ensembles.
The decorrelation principle is a statement about any disor-
dered packing, equilibrium or not. For example, contact delta
functions �constrained correlations� are an important at-
tribute of nonequilibrium jammed disordered packings and
have no analog in equilibrium lattice models of any dimen-
sion. Finally, the decorrelation principle arises from the fact
that the Kabatiansky-Levenshtein asymptotic upper bound
on the maximal packing density �6� implies that � must go to
zero at least as fast as 2−0.5990d for large d and therefore,
unconstrained spatial correlations between spheres are ex-
pected to vanish, i.e., statistical independence is established
�16�. There is no counterpart of the Kabatiansky-Levenshtein
bound in mean-field theories.

Motivated by these recent results, we study the structural
properties of standard RSA packings ��=0 for the general-
ized RSA process� in the infinite-time or saturation limit,
generated via computer simulations, for the first six Euclid-
ean space dimensions �1�d�6�. The algorithm is checked
by reproducing some known results for d=1,2 and 3
�19,20,22–24�. Although we know that the saturation density
��
� for RSA packings is bounded from below by 2−d

�14,16� and that the greedy lower bound �5� is weak for
saturated packings, the manner in which ��
� for RSA pack-
ings scales with dimension is not known for d�3. One ob-
jective of this paper is to answer this question. Another aim
is determine the corresponding pair correlation functions and
structure factors in order to ascertain whether decorrelations
can be observed as the space dimension increases up to six.
A byproduct of our high-dimensional analysis is a relatively
sharp lower bound on the saturation density of RSA packings
for any d. Although a Palàsti-type conjecture �the saturation
density in Rd is equal to that of the one-dimensional problem
raised to the dth power� is exact for ghost RSA packings, we
provide a trivial proof that this conjecture cannot be true for
standard RSA packings.

In Appendix A, we obtain kissing �contact� number statis-
tics for saturated RSA configurations on the surface of a
d-dimensional sphere for dimensions 2�d�5 and compare
to the maximal kissing numbers in these dimensions. In Ap-
pendix B, we determine the structure factor exactly for ghost
RSA packings and show that its distance from “hyperunifor-
mity” �25� increases as the space dimension increases, ap-
proaching a constant asymptotic value.

II. SOME KNOWN ASYMPTOTIC RESULTS
FOR RSA PACKINGS

Here we collect some known asymptotic results for the
standard RSA process for d-dimensional hard spheres.
Henceforth, we call �s���
� the saturation �infinite-time�
limit of the density.

In his numerical study of RSA hard disks, Feder �20�
postulated that the asymptotic coverage in the long-time
limit for d-dimensional hard spheres follows the algebraic
behavior

�s − ��
� � 
−1/d, �7�

where 
 represents a dimensionless time. Theoretical argu-
ments supporting Feder’s law �7� have been put forth by
Pomeau �26� and Swendsen �27�. Not surprisingly, the satu-
ration limit is approached more slowly as the space dimen-
sion increases.

Moreover, similar arguments lead to the conclusion that
the pair correlation function g2�r� at the saturation limit pos-
sesses a logarithmic singularity as the dimensionless radial
distance r for spheres of diameter D approaches the contact
value from the right side, independent of dimension �26,27�,
i.e.,

g2�r� � − ln�r/D − 1�, r → D+ and � = �s. �8�

Boyer et al. �28� also showed that the pair correlation func-
tion for d=1 has super-exponential decay. Specifically, they
found that at any finite time 
 or density �,

g2�r� �
1

��r�� 2

ln�r/D − 1�	
r/D−1

, r → 
 and 0 � � � �s.

�9�

Thus, g2 is a short-ranged function at any density. This
super-exponential decay of the pair correlation function per-
sists in higher dimensions as well. As we will discuss in Sec.
IV, this rapid decay of g2�r� has implications for the analytic
properties of the structure factor S�k�.

III. NUMERICAL PROCEDURES

In what follows, we describe an efficient procedure to
generate RSA packings in the saturation limit as well as the
methods used to compute structural information, such as the
density, pair correlation function, structure factor, and cumu-
lative coordination number.

A. Generation of RSA packings in Rd in the saturation limit

We present a computationally fast method to generate
RSA configurations of hard spheres in the saturation limit in
the thermodynamic limit. Periodic boundary conditions are
applied to a hypercubic fundamental cell of side length L and
volume Ld. Spheres of diameter D are placed randomly and
sequentially inside the fundamental cell, which is periodi-
cally replicated to fill all of d-dimensional Euclidean space
Rd, until the saturation limit is achieved.

In order to speed up the computation, we attempt to add a
particle only in the available space rather than wasting com-
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putational time in attempting to add particles anywhere in the
fundamental cell �29,30�. This requires keeping track of the
time-dependent available space, which is the space exterior
to the union of the exclusion spheres of radius D centered at
each successfully added sphere at any particular time. This is
done by tessellating the hypercubic fundamental cell into
smaller, disjoint hypercubic cells �“voxels”� which have side
length between 0.025D and 0.1D, depending upon the di-
mension.

At the start of the simulation, all voxels are declared ac-
cessible to particle placement. There are two stages involved
to determine the time-dependent available space. A coarse
estimation of the available space is used in the first stage,
which is refined in the second stage. In the first stage, a
particle is successfully added to the simulation box, provided
that it does not overlap any existing particle. To avoid check-
ing for nonoverlaps with every successfully added particle to
the simulation box, we employ a “neighbor list” �3�, which
amounts to checking within a local neighborhood of the at-
tempted particle placement. For each successfully added par-
ticle, all voxels located within the largest possible inscribed
hypercube centered at the exclusion sphere of radius D that
are fully occupied by the particle are declared to be part of
the unavailable space. The voxels outside this hypercube but
within the exclusion sphere may be partially filled. In the
initial stages, such partially filled voxels are declared to be
part of the available space. We call these accessible voxels. If
there have been at least one million unsuccessful placement
attempts since the last accepted particle placement, we move
to the second stage to refine our determination of the avail-
able space. In particular, we determine whether each remain-
ing accessible voxel from the first stage can accommodate a
particle center by a random search of each accessible voxel.
After about 1000 random placement attempts, a particle is
either added to a particular voxel or this voxel is declared to
be part of the unavailable space. This search is carried out for
all other accessible voxels. The simulation terminates when
all voxels are unavailable for particle addition in the second
stage.

This two-stage procedure enables us to generate RSA
packings that are saturated or nearly saturated. Generating
truly saturated RSA packings becomes increasingly difficult
as the space dimension increases, as the asymptotic relation
�7� indicates.

B. Calculation of the saturation density

At any instant of time 
, the number N�
� of added par-
ticles for a particular configuration is known and the density
��
� is computed from relation �1� with �=N�
� /Ld. We call
�stop���
max� the “stopping” density, i.e., the density at the
time 
max when the simulation is terminated. The system size
L /D is sufficiently large so as produce a histogram for �stop
or �s that is Gaussian distributed. Although we do not
present the full distribution of densities here, we do report
the associated standard errors. �Note that it has been rigor-
ously shown that the saturation density is asymptotically nor-
mal as the infinite-volume limit is approached for any con-
vex particle in Rd �31�.� In order to estimate the true

saturation density �s, the volume of the available space Va�
�
as a function of dimensionless time 
 is recorded in the very
late stages, namely, for the last 10 particles added. The satu-
ration density �s is estimated from this late-stage data by
plotting ��
� versus 
−1/d �cf. �7�� and extrapolating to the
infinite-time limit. However, to perform the extrapolation
properly the time increment between each particle addition
cannot be taken to be uniform but instead must increase with
increasing time in order to account for the fact that we only
attempt to add particles in the available space. In the very
late stages, this time increment �
 is given by

�
 =
Ld

Va�
�
. �10�

The stopping density �stop always bounds the saturation den-
sity �s from below, but as we will soon see, �stop is very
nearly equal to the saturation density �s.

C. Calculation of the pair correlation function

We obtain the pair correlation function g2�r� at the nearly
saturated stopping density �stop for a specific configuration
by generating a histogram of the average number of particle
centers n�r� contained in a concentric shell of finite thickness
�r at radial distance r from an arbitrary reference particle
center �3�. The radial distance r is defined as halfway be-
tween the inner radius �r−�r /2� and the outer radius �r
+�r /2� of each shell. The shell thickness is termed the bin
width. Let nk�r� represent the accumulated pairs of particles
for the entire system placed in bin k associated with a radial
distance r. By definition, nk�r� must be an even integer. Then

n�r� =
nk�r�

N
, �11�

where N is the number of particles in the fundamental cell. In
general, the pair correlation �or radial distribution� function
is defined as

g2�r� =
n�r�

�vshell�r�
, �12�

where vshell is the volume of the d-dimensional shell, given
by

vshell = v1�r�� �r + �r/2�d − �r − �r/2�d

rd 	 , �13�

� is the number density N /Ld, and v1�r� is the volume of a
d-dimensional sphere of radius r as shown earlier.

We compute ensemble-averaged pair correlation functions
by binning up to a maximum distance of rmax for each real-
ization of the ensemble and then averaging over all ensemble
members. Away from contact, we employ a bin width of
�r=0.05D. Near contact, we use a finer bin width of �r
=0.005D in order to accurately capture the logarithmic di-
vergence of g2�r� as the contact value is approached.

D. Calculation of the cumulative coordination number

Another quantity of interest is the cumulative coordina-
tion number Z�r�, which gives the average number of sphere
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centers within a distance r from a given sphere center. It is
related to the pair correlation function g2�r /D� as follows:

Z�r� = �

1

r/D

s1�x�g2�x�dx = 2dd�

1

r/D

xd−1g2�x�dx ,

�14�

where s1�r�=d�d/2rd−1 /��1+d /2� is the d-dimensional sur-
face area of a sphere of radius r �3�.

E. Calculation of the structure factor

Finally, we also compute the structure factor S�k�, which
provides a measure of the density fluctuations at a particular
wave vector k and is defined by the relation

S�k� � 1 + �h̃�k� , �15�

where h̃�k� is the Fourier transform of the total correlation
function h�r��g2�r�−1. When the total correlation in Rd

depends on the radial distance r= �r�, the structure factor S�k�
in Rd depends on the wave number k= �k� and, for any space
dimension d, is given by �9,16�

S�k� = 1 + ��2��d/2

0




rd−1h�r�
J�d/2�−1�kr�

�kr��d/2�−1 dr , �16�

where J��x� is the Bessel function of order �.
The expression �16� provides a means for computing the

structure factor by Fourier transforming the real-space total
correlation function in Rd. If one is interested in the large-
wavelength �small k� behavior, however, the large r behavior
of h�r� must be known with high precision. Even for rela-
tively large simulation cells, it is difficult to access this large-
r asymptotic behavior. In such instances, it is better to com-
pute the structure factor directly from the collective density
variables, i.e.,

S�k� =
����k��2


N
, �17�

where

��k� = �
j=1

N

exp�ik · r j� �18�

are the collective density variables, angular brackets denote
an ensemble average, and k are the wave vectors appropriate
for the periodic cell of volume V. For the hypercubic funda-
mental cell of side length L considered here, the
d-dimensional wave vectors are given by

k = �2�

L
n1,

2�

L
n2, . . . ,

2�

L
nd	 , �19�

where ni �i=1,2 , . . . ,d� are the integers. Thus, the smallest
positive wave vector that one can measure has magnitude
2� /L. For small to intermediate values of k, we will employ
the direct method, while for intermediate to large values of k,
we will use both the direct and indirect method �i.e., we
calculate S�k� using �16��.

IV. RESULTS AND DISCUSSION

A. Saturation density

The saturation density �s for each of the first six space
dimensions was determined by considering 75–1000 realiza-
tions and several different system sizes, as discussed in Sec.
III B. Table I summarizes our results for the saturation den-
sity for the largest systems and the associated standard error.
Included in the table is the stopping density �stop, relative
system volume Ld /v1�1/2� for the largest system, where
v1�1/2� is the volume of a hypersphere, and the total number
of configurations nconf. Our results for d=1,2, and 3 agree
well with-known results for these dimensions �19,20,22–24�.
We see that the stopping density �stop is very nearly equal to
the saturation density �s for all dimensions, except for d=1
where these two quantities are identical. For d=1, no ex-
trapolation was required since we can ensure that the pack-
ings were truly saturated in this instance.

It is of interest to determine how the saturation density �s
scales with dimension. We already noted that the infinite-
time density of the ghost RSA packing �equal to 2d� provides
a lower bound on saturation density of the standard RSA
packing. Therefore, it is natural to consider the ratio of the
saturation density to the infinite-time density of the ghost
RSA packing, i.e., 2d�s. When this ratio is plotted versus

TABLE I. The computed saturation density �s and associated standard error for the first six space
dimensions. Included in the table is the stopping density �stop, relative system volume Ld /v1�1/2�, and the
total number of configurations nconf.

Dimension, d �stop �s Ld /v1�1/2� nconf

1 0.74750 0.74750±0.000078 6688.068486 1000

2 0.54689 0.54700±0.000063 9195.402299 1000

3 0.38118 0.38278±0.000046 13333.333333 1000

4 0.25318 0.25454±0.000091 21390.374000 635

5 0.16046 0.16102±0.000036 66666.666667 150

6 0.09371 0.09394±0.000048 193509.198363 75
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dimension for 2�d�6, it is clear that the resulting function,
to an excellent approximation, is linear in d, implying the
scaling form

�s =
c1

2d +
c2d

2d , �20�

where c1=0.202 048 and c2=0.973 872. Indeed, the linear fit
of 2d�s, shown in Fig. 1, is essentially perfect �the correla-
tion coefficient is 0.9993�. This indicates that the scaling
form for relatively low dimensions is accurate. In the follow-
ing section, we provide an analytical argument supporting
the same scaling form in the high-dimensional limit. It is
noteworthy that the best rigorous lower bound on the maxi-
mal density �32�, derived by considering lattice packings, has
the same form as �20�.

An interesting conjecture due to Palàsti �33� claims that
the saturation density for RSA packings of congruent, ori-
ented d-dimensional cubes equals the saturation density �s
=0.747 598. . . �19� of the one-dimensional problem raised to
the dth power. It took over 30 years to show, through a
precise Monte Carlo simulation in two dimensions �29�, that
the Palàsti conjecture could not be rigorously true. For RSA
packings of congruent, oriented squares, the saturation den-
sity was determined to be 0.562 009±0.000 004, which is
close but not equal to �0.74 759 8. . . �2=0.5589. . . . It is note-
worthy that the saturation density for oriented squares is also
close to that of circular disks �see Table I�. These two sys-
tems are distinguished from one another in that the available
space for particle addition in the late stages for the former
are relatively large rectangles �29�, while for disks they are
small “triangular”-shaped regions �22�.

Is a Palàsti-type conjecture �involving raising the one-
dimensional density result to the dth power� ever valid for
disks? We make the simple observation here that the Palàsti
conjecture is exact for the ghost RSA packing �14� in the
infinite-time limit because ��
�=2−d in any dimension.
Moreover, it is trivial for us to rigorously prove that a
Palàsti-type conjecture cannot be true for the standard RSA
packing of spheres in Rd. This conjecture would state that

�s =
1

2�0.419665. . .�d �21�

is the saturation density for such a packing for all d. How-
ever, this violates the asymptotic Kabatiansky-Levenshtein
upper bound �6� for the maximal density of a sphere packing
in Rd. Therefore, a Palàsti-type conjecture cannot be true for
standard RSA packing of spheres Rd. This was known from
numerical experiments, but a proof was never presented until
now.

B. Pair correlation function

Figures 2 and 3 show the ensemble averaged pair corre-
lation functions for the first six space dimensions very near
their respective saturation densities. They are computed from
the same configurations used to calculate the saturation den-
sities, as described in Sec. IV A. To our knowledge, our re-
sults for g2 very near the saturation densities have not been
presented before for d�3. The inset in each figure shows the
near-contact behavior, which is consistent with the expected
logarithmic divergence at contact and fitted to the form

g2�x� = a0 ln�x − 1� + a1, 1 � x � 1.135, �22�

where x=r /D. Table II summarizes the values of the fit pa-
rameters a0 and a1 for each dimension. Of course, the loga-
rithmic term overwhelms the constant coefficient a1 as x
→1. Our result for the logarithmic coefficient a0 for d=1
agrees well with the exact result a0=−1.128. . . �22�. There
are no exact results for a0 for d�2, but it has been previ-
ously evaluated numerically for d=2 by Hinrichsen et al.
�22�, who obtained the value a0=−1.18, which is somewhat
smaller in magnitude than the value reported in Table II.
These authors were only able to fit their data in the near-
contact region over about 1.5 decades on semilogarithmic
plot due to insufficient statistics. Indeed, we have employed
substantially more configurations than they did and were
able to fit our data over about 4.6 decades on semilogarith-
mic plot. The results reported in Table II for d�3 have not
been presented before. Feder et al. also gave an expression
for the dominant logarithmic term for any d in terms of a
certain Voronoi statistic and the “hole-size” distribution func-
tion at contact; but since neither of these quantities are
known analytically, it is not a practically useful relationship.

Figure 4 plots all of the pair correlation functions on the
same scale. We see that the “decorrelation principle,” which
states that unconstrained spatial correlations diminish as the
dimension increases and vanish entirely in the limit d→

�14,16�, is already markedly apparent in these relatively low
dimensions. Correlations away from contact are clearly de-
creasing as d increases from d=1. The near-contact behavior
also is consistent with the decorrelation principle for d�2.
Although the logarithmic coefficient a0 increases in going
from d=1 to d=2, it decreases for all d�2 �cf. Table II�. The
decorrelation principle dictates that a0 tends to zero as d
tends to infinity. Similarly, the constant coefficient a1 in-
creases for d�2 and for d=6 is equal to 0.661 348 �cf. Table
II�. Indeed, the decorrelation principle requires that a1 tends
to unity, indicating the absence of spatial correlations, as d
tends to infinity.

FIG. 1. �Color online� Fit of data for the product 2d�s to the
linear form �20� for 2�d�6. The correlation coefficient is 0.9993,
and c1=0.202 048 and c2=0.973 872.
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C. Cumulative coordination number

The cumulative coordination number Z�r� at �=�stop is
easily obtained from the previous results for g2�r� by per-
forming the integration indicated in �14�. All of these results
for 1�d�6, to our knowledge, have not been presented
before. For D�r�D�1+��, where �→0, we can use the
asymptotic form to yield the corresponding expression for
Z�1+�� in any dimension d as

Z�1 + �� = 2dd�s�a0�ln��� − 1� + a1�� + o��� , �23�

where o��� signifies terms of higher order in � and distance is
measured in units of the hard-sphere diameter. Thus, Z�1

+��→0 in the limit �→0, i.e., the average contact number is
zero for RSA packings. This feature makes RSA packings
distinctly different from maximally random jammed �MRJ�
packings �34,35�, which have an average contact number
equal to 2d �36,37�. This is one reason, among others, why
the former packing has a substantially smaller density than
the latter. The MRJ densities, as determined from computer
simulations �34–37�, are given 0.64, 0.46, 0.31, and 0.20 for
d=3,4 ,5, and 6, respectively, which should be compared to
the RSA saturation densities given in Table I. We also note
that the appearance of the product a0 ln���� in �23� means
that the cumulative coordination number will be concave
near contact and possess a positive infinite slope at contact.

FIG. 2. �Color online� The pair correlation functions for RSA
packings for d=1 �top panel�, d=2 �middle panel�, and d=3 �bot-
tom panel� very near their respective saturation densities: �=�stop

=0.747 50, �=�stop=0.546 89, and �=�stop=0.381 18, respec-
tively. The insets show semilogarithmic plots of the divergence in
g2�r� near contact. The straight line is a linear fit of the data.

FIG. 3. �Color online� The pair correlation functions for RSA
packings for d=4 �top panel�, d=5 �middle panel�, and d=6 �bot-
tom panel� very near their respective saturation densities: �=�stop

=0.253 18, �=�stop=0.160 46, and �=�stop=0.093 71, respec-
tively. The insets show semilogarithmic plots of the divergence in
g2�r� near contact. The straight line is a linear fit of the data.
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For values of r away from the near-contact behavior, we
can deduce the following explicit approximation for the
d-dimensional RSA cumulative coordination number Z�x� as
a function of the dimensionless distance x=r /D at saturation:

Z�x� = �c1d + c2d2���a0�ln��� − 1� + a1�� +
xd

d

−
�1 + ��d

d
	, x � 1 + � , �24�

where � is a small positive number �which can be taken to be
0.135 in practice� describing the range of the near-contact
behavior, and the constants c1 ,c2 ,a0 ,a1 are given in the cap-
tion of Fig. 1 and Table II. This approximation is obtained
using the saturation density scaling �20�, the near-contact
relation �23�, and definition �14� employing the approxima-
tion that g2�x�=1, which of course becomes exact as x and/or
d becomes large. In light of the superexponential decay of g2
in any dimension and the decorrelation principle, x or d does
not have to be large for the approximation �24� to be accu-
rate.

Figure 5 shows the cumulative coordination number Z�r�
for the first six space dimensions at their respective satura-
tion densities. These results are obtained by numerically in-
tegrating �14� using the trapezoidal rule and our correspond-

ing numerical data for g2�r�. The insets of these figures
clearly show the concavity of Z�r� near contact, as predicted
by �23�. Away from contact, formula �24� provides a good
approximation to the numerically determined values of Z�r�
and is especially accurate for d�3.

In Appendix A, we determine kissing �contact� number
statistics for saturated RSA configurations on the surface of a
d-dimensional sphere for dimensions 2�d�5 and compare
to the maximal kissing numbers in these dimensions. It is of
interest to determine the value of r at which the cumulative
coordination number Z�r� for a saturated RSA packing in Rd

matches the average RSA kissing number �Z
 on the surface
of a hypersphere in the same dimension. Using Table IV, we
find that Z�r�= �Z
 for r /D=1.4233,1.430 42,1.360 44, and
1.3202 for d=2,3 ,4, and 5, respectively. We see that these
distances are relatively small and decrease with increasing
dimension for 2�d�5 and would expect the same trend to
continue beyond five dimensions. This behavior is expected
because RSA packings have superexponential decay of large-
distance pair correlations in any dimension, and the decorre-
lation principle dictates that all unconstrained correlations at
any pair distance must vanish as d becomes large. Therefore,
a saturated RSA packing in high dimensions should be well
approximated by an ensemble in which spheres randomly
and sequentially packed in a local region around a centrally
located sphere until saturation is achieved. Indeed, we have

TABLE II. Fits of the pair correlation function g2�r� at the very
nearly saturation density �=�stop to the form a0 ln�x−1�+a1 for
1�x�1.135.

Dimension, d a0 a1

1 −1.119 55 −0.117 475

2 −1.291 75 −0.883 021

3 −1.165 46 −0.808 843

4 −1.007 43 −0.580 44

5 −0.714 731 0.020 810

6 −0.412 100 0.661 348

FIG. 4. �Color online� The pair correlation functions for RSA
packings for the first six dimensions very near their respective satu-
ration densities. Correlations clearly decrease as the space dimen-
sion increases. Note that the first intercept of g2�r� with unity de-
creases with increasing dimension.

FIG. 5. �Color online� The cumulative coordination number Z�r�
for RSA packings for the first six space dimensions very near their
respective saturation densities, as obtained from our numerical data
for g2�r� and �14�. The insets show the concavity of Z�r� near the
contact value, which is in agreement with the behavior predicted by
relation �23�. Away from contact, formula �24� provides a good
approximation to the numerical data, especially for d�3.
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verified this proposition numerically, but do not present such
results here. As the dimension increases, therefore, the local
environment around a typical sphere in an actual RSA pack-
ing in Rd should be closely approximated by saturated RSA
configurations on the surface of a d-dimensional sphere, even
though the former cannot have contacting particles.

D. Structure factor

In light of the discussion given in Sec. II, the total corre-
lation function h�r� decays to zero for large r superexponen-
tially fast. It is well known from Fourier transform theory
that if a real-space radial function f�r� in Rd decreases suf-
ficiently rapidly to zero for large r such that all of its even

moments exist, then its Fourier transform f̃�k� is an even
function and analytic at k=0. Thus, the structure factor S�k�
for an RSA packing of spheres in Rd must be an even, ana-
lytic function at k=0. Hence, S�k�, defined by �16�, has an
expansion about k=0 in any space dimension d for 0��
��s of the general form

S�k� = S0 + S2k2 + O�k4� , �25�

where S0 and S2 are the d-dependent constants defined by

S0 = 1 + 2dd�

0




rd−1h�r�dr � 0 �26�

and

S2 = − 2d−1�

0




rd+1h�r�dr . �27�

This analytic behavior of S�k� is to be contrasted with that of
sphere packings near the MRJ state, which possesses a struc-
ture factor that is nonanalytic at k=0 �36� due to a total
correlation function h�r� having a power-law tail.

It is of interest to determine whether RSA packings are
hyperuniform �25� as �→�s and, if not, their “distance”
from hyperuniformity. A hyperuniform packing is one in
which

lim
k→0

S�k� = 0, �28�

i.e., the infinite-wavelength density fluctuations vanish. For
RSA packings, this is equivalent to asking whether the gen-
erally nonnegative coefficient S0, defined in �25�, vanishes. It
is known that in one dimension, S0�0.05 �28�, and hence
RSA rods are nearly but not quite hyperuniform. For any
nonhyperuniform packing, the magnitude of S0 provides a
measure of its “distance” from hyperuniformity. For a Pois-
son point pattern, it is well known that S0=1, but, in general,
S0 can become unbounded if h�r� decays to zero more slowly
than r−d, as it does for a fluid at its critical point.

Our results for S�k� very near the saturation density for
the first six space dimensions are depicted in Fig. 6. To our
knowledge, these results for d�2 have not been presented
before. As the space dimension increases, the amplitudes of
the oscillations of S�k� diminish, consistent with the decor-
relation principle. Note that the minimum value of S�k� in

each dimension is achieved at the origin. Table III provides
the value of the structure factor at k=0, denoted by S0, by
extrapolating our numerical data from the “direct” method
near k=0 using the form �25� up to quadratic terms. We see
that for 1�d�6, all of the packings are nearly hyperuni-
form and for d�2, the distance from hyperuniformity does
not appreciably vary as a function of dimension. In fact, our
results indicate that the minimum value S0 quickly ap-
proaches a constant value of about 1 /20=0.05 as d becomes
large.

The near hyperuniformity of a RSA packing in Rd at its
respective maximal density is a consequence of the satura-
tion property. Long wavelength density fluctuations are ap-

FIG. 6. �Color online� The structure factor S�k� for RSA pack-
ings for the first six space dimensions very near their respective
saturation densities. Top panel includes curves for d=1,2, and 3
and the bottom panel includes curves for d=4,5, and 6. Consistent
with the behavior of g2, we see again that pair correlations clearly
decrease as the space dimension increases.

TABLE III. The structure factor S0 at k=0 at the stopping den-
sity �stop obtained extrapolating our numerical data from the “di-
rect” method near k=0 using the form �25� up to quadratic terms.

Dimension, d S0

1 0.051

2 0.059

3 0.050

4 0.050

5 0.050

6 0.050
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preciably suppressed because spherical gaps of a diameter
equal to a sphere diameter or larger cannot exist in the pack-
ing. In an earlier paper �25�, Torquato and Stillinger conjec-
tured that saturated but strictly jammed disordered packings
must be hyperuniform, which was subsequently verified by
numerical simulations in three dimensions �36�. By this rea-
soning, one would expect a ghost RSA packing in Rd not to
be hyperuniform, even at its maximal density of 1 /2d be-
cause it is never saturated. In fact, in Appendix B we deter-
mine the structure factor of the ghost RSA packing exactly
and show that at its maximal density its distance from hype-
runiformity increases as the space dimension d increases,
asymptotically approaching the value of 1/2.

V. HIGH-DIMENSIONAL SCALING OF SATURATION
DENSITY AND LOWER BOUNDS FOR ANY d

To determine whether the form of the observed density
scaling �20� for the first six space dimensions persists in the
high-dimensional limit, we will apply an optimization proce-
dure that Torquato and Stillinger �9,16� introduced to study
the structure of disordered packings. We begin by briefly
reviewing this procedure and then apply it to the problem at
hand. A g2-invariant process is one in which a given non-
negative pair correlation g2�r� function remains invariant as
density varies for all r over the range of densities

0 � � � �*. �29�

The terminal density �* is the maximum achievable density
for the g2-invariant process subject to satisfaction of certain
necessary conditions on the pair correlation function. In par-
ticular, we considered those “test” g2�x�’s that are distribu-
tions on Rd depending only on the radial distance x. For any
test g2�x�, we want to maximize the corresponding density �
satisfying the following three conditions:

�i� g2�r��0 for all r,
�ii� g2�r�=0 for r�D,
�iii�

S�k� = 1 + ��2��d/2

0




rd−1h�r�
J�d/2�−1�kr�

�kr��d/2�−1 dr � 0 for all k ,

where S�k� is the structure factor defined by �15�. When there
exist sphere packings with g2 satisfying conditions �i�–�iii�
for � in the interval �0,�*�, then we have the lower bound
on the maximal density given by

�max � �*. �30�

In addition, to the non-negativity of the structure factor
S�k�, there are generally many other conditions that a pair
correlation function of a point process must obey �38�.
Therefore, any test g2 that satisfies the conditions �i�–�iii�
does not necessarily correspond to a packing. However, it is
conjectured that a hard-core non-negative tempered distribu-
tion g2�r� is a pair correlation function of a translationally
invariant disordered sphere packing �21� in Rd at number
density � for sufficiently large d if and only if S�k��0
�14,16�. The maximum achievable density is the terminal
density �*.

A certain test g2 and this conjecture led to the putative
long-sought exponential improvement on Minkowski’s lower
bound �14,16�. The validity of this conjecture is supported by
a number of telling results. First, the decorrelation principle
states that unconstrained correlations in disordered sphere
packings vanish asymptotically in high dimensions and that
the gn for any n�3 can be inferred entirely from a knowl-
edge of � and g2. Second, the necessary Yamada condition
�39� appears to only have relevance in very low dimensions.
This states that the variance �2������N���2− �N���
�2
 in
the number N��� of particle centers contained within a re-
gion or “window” ��Rd must obey the following condi-
tion:

�2��� = �����1 + �

�

h�r�dr	 � ��1 − �� , �31�

where � is the fractional part of the expected number of
points � ��� contained in the window. Third, we have shown
that other new necessary conditions also seem to be germane
only in very low dimensions. Fourth, we have recovered the
form of known rigorous bounds on the density in special
cases of the test g2 when the aforementioned conjecture is
invoked. Fifth, in these latter two instances, configurations of
disordered sphere packings on the flat torus have been nu-
merically constructed with such g2 in low dimensions for
densities up to the terminal density �40,41�. Finally, our op-
timization procedure is precisely the dual of a primal linear
program devised by Cohn and Elkies �11� to obtain upper
bounds on the density. This connection proves that the con-
jectural lower bound can never exceed the Cohn-Elkies up-
per bound, which must be an attribute of any rigorous lower
bound. In summary, there is strong evidence to support the
conjecture.

We now apply this optimization procedure and the afore-
mentioned conjecture to ascertain whether the form of the
density scaling �20� persists in the high-dimensional limit. In
this limit, the decorrelation principle as well as our numeri-
cal results for the pair correlation function in the first six
space dimensions �cf. Fig. 4� enable us to conclude that g2�x�
is very nearly unity for almost all distances beyond contact
except for a very small non-negative interval in the near-
contact region. By virtue of the decorrelation principle, the
extra structure in low dimensions representing unconstrained
spatial correlations beyond a single sphere diameter should
vanish as d→
, and therefore we consider a high-
dimensional test pair correlation function in Rd that is non-
unity within a small positive interval 1�x�1+� beyond
contact and unity for all x greater than 1+�, i.e., we consider

g2�x� = �0, x � 1,

1 + f�x� , 1 � x � 1 + � ,

1, x � 1,

�32�

where � is a very small positive constant ���0 and ��1� is
any integrable function in one dimension that satisfies f�x�
�−1. This class of functions can include even those that
diverge to infinity as x→1. Examples of the latter integrable
class include
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f�x� = − ln�x − 1� , �33�

f�x� =
1

�x − 1�� , 0 � � � 1, �34�

and

f�x� = ��x − 1� , �35�

where ��x� is the Dirac delta function. Equation �33� de-
scribes the divergence seen in g2�x� of the standard RSA
packing at contact �cf. �8��. By contrast, Eq. �34� character-
izes the near-contact divergence of g2�x� for maximally ran-
dom jammed �MRJ� packings �34� with ��0.6 �37,42�.
Equation �35� describes random sphere packings with a posi-
tive average contact number. For general f�x�, the corre-
sponding structure factor �cf. �iii�� for the test function �32�
in any dimension d is given by

S�k� = 1 −
23d/2���1 + d/2�

kd/2 �Jd/2�k�

− k

1

1+�

xd/2f�x�J�d/2�−1�kx�dx	 . �36�

We now make use of the following general result that
applies to any function G�x� that is bounded as x→1,



1

1+�

G�x�f�x�dx = G�1�I��� , �37�

where, as before, � is a very small positive number, and I�x�
is the integral

I�x� = 

1

1+x

f�y�dy . �38�

For the functions �33�–�35�, the integral I�x=�� is, respec-
tively, given by

I��� = �1 − ln ��� , �39�

I��� =
�1−�

1 − �
, 0 � � � 1 �40�

and

I��� = 1. �41�

Making use of the result �37� in �36� yields the structure
factor to be given by

S�k� = 1 −
23d/2���1 + d/2�

kd/2 �Jd/2�k� − kJ�d/2�−1�k�I���� .

�42�

The structure factor for small k can be expanded in a Ma-
cLaurin series as follows:

S�k� = 1 + 2d��dI��� − 1� +
2d−1�

d + 2
�1 − I����d + 2��k2 + O�k4� .

�43�

The last term changes sign if I��� increases past 1 / �d+2�. At
this crossover point,

S�k� = 1 −
2d+1

d + 2
� + O�k4� . �44�

Under the constraint that the minimum of S�k� occurs at k
=0, the terminal density is then given by

�* =
d + 2

2d+1 �1 − S0� , �45�

where S0� �0,1� is the value of the structure factor at k=0 or
the assumed minimum value in the high-dimensional limit.
Thus, we see that the terminal density is independent of the
specific form of I��� or, equivalently, the choice of the func-
tion f�r� �cf. �32��, which only has influence in a very small
positive interval around contact. For a hyperuniform situa-
tion �S0=0�, the formula �44� reduces to

�* =
d + 2

2d+1 , �46�

which was obtained previously �9� for the specific choice of
f�r� given by �35�.

It is noteworthy that the high-dimensional asymptotic
structure factor relation �42� under the conditions leading to
�45� yields a structure factor for d=6, a relatively low dimen-
sion, that is remarkably close to our corresponding simula-
tional RSA result �depicted in the bottom panel of Fig. 6 for
most values of the wave number k. Such agreement between
the asymptotic and low-dimensional numerical results
strongly suggests that our asymptotic form �32� for the pair
correlation function indeed captures the true high-
dimensional behavior for RSA packings. Nonetheless, this
cannot be regarded as a completely rigorous proof because of
our use of the conjecture of Ref. �16� concerning the exis-
tence of disordered packings in high dimensions. It should be
noted, however, that unlike Ref. �16�, our test function
choice �32� is definitely a reasonable approximation of the
high-dimensional behavior of a realizable �RSA� packing.
One might argue that a better test function choice would be
to add to �32� a short-ranged function that was not concen-
trated around a small interval near contact, e.g., a shoulder of
variable height that vanishes at some radial distance away
from contact. However, we have shown earlier �43� that the
optimal solution for the terminal density forces the shoulder
to be a delta function concentrated at contact, i.e., it becomes
a special case of the test function �32�, and therefore nothing
is gained by including a short-ranged shoulder.

In summary, we see that the high-dimensional result �45�
shows that the form of the density scaling �20� at saturation
for relatively low-dimensional RSA packings is expected to
persist in the high-dimensional limit. Indeed, as we will
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show below, the high-dimensional scaling �45� provides a
lower bound on the RSA saturation density �s for arbitrary d,
i.e.,

�s �
d + 2

2d+1 �1 − S0� . �47�

Again, strictly speaking, this cannot be regarded to be a rig-
orous lower bound because the argument rests on the conjec-
ture of Ref. �16�, but, as we will see, it not only provides a
true lower bound on RSA packings but other disordered
packings in low dimensions. Figure 7 depicts a graphical
comparison of the lower bound �47� to our numerical data
for the saturation density for the first six space dimensions.

The inequality �47� is a consequence of a more general
principle that enables us to exploit high-dimensional infor-
mation in order to infer scaling behavior in low dimensions,
as we now describe. For any particular packing construction
in Rd �e.g., RSA, ghost RSA or MRJ packings�, the highest
achievable density �m�d� decreases with increasing dimen-
sion d. Therefore, the scaling for the maximal density in the
asymptotic limit d→
, which we denote by �
, should pro-
vide a lower bound on �m�d� for any finite dimension, i.e.,

�m�d� � �
. �48�

In the case of RSA packings in Rd, we have shown that
the high-dimensional density scaling is provided by the
analysis leading to �45� and therefore use of �48� yields the
lower bound �47� in which S0 is a small positive number. It is
noteworthy that a lower bound on the MRJ density �MRJ is
given by the right-hand side of inequality of �47� but with
S0=0, i.e.,

�MRJ �
d + 2

2d+1 . �49�

This is obtained by recognizing that the same high-
dimensional scaling analysis as we used for RSA applies
with one qualitative difference. The high-dimensional limit
of the pair correlation function of an MRJ packing is ex-
pected to be of the same form as �32� but where f�x� is a
Dirac delta function to account for interparticle contacts due

to the constraint of jamming. Since we know that MRJ pack-
ings are hyperuniform �S0=0� �36,37�, then �45� together
with �48� produces the bound �49�. The MRJ lower bound
�49� yields 0.3125, 0.1875, 0.109 375, 0.0625 for d=3, 4, 5,
and 6, respectively, which is to be compared to the corre-
sponding actual MRJ densities of 0.64, 0.46, 0.31, and 0.20
�34–37�. Note that in Ref. �16�, the right-hand side of �49�
was argued to be a lower bound on the maximal density �max
of any sphere packing in Rd. In the case of the ghost RSA
packing, we know that 1 /2d is the maximal density �GRSA
for any dimension, and therefore this result in conjunction
with �48� yields the lower bound �GRSA�1/2d, which of
course is exact.

VI. CONCLUSIONS

We have studied the structural characteristics of random
sequential addition of congruent spheres in d-dimensional
Euclidean space Rd in the infinite-time or saturation limit for
the first six space dimensions �1�d�6� both numerically
and theoretically. Specifically, by numerically generating
saturated RSA configurations in each of these dimensions,
we determined the saturation density, pair correlation func-
tion, cumulative coordination number and the structure fac-
tor. We found that for 2�d�6, the saturation density �s has
the scaling given by �20�. Using theoretical considerations,
we showed analytically that the same density-scaling form is
expected to persist in the high-dimensional limit, i.e., the
saturation density is controlled by d /2d. Therefore, the lower
bound �5� on the maximal density for any saturated packing
is improved by a factor linear in the dimension. A byproduct
of the aforementioned high-dimensional analysis was the de-
termination of a relatively sharp lower bound on the satura-
tion density �47� of RSA packings for any d, which utilized
the infinite-wavelength limit of the structure factor in the
high-dimensional limit. Thus, high-dimensional information
was exploited to provide density estimates in low dimen-
sions. The same argument provided lower bounds on the
density of other disordered packings �MRJ and ghost RSA
packings� in low dimensions. We showed that a Palàsti-type
conjecture cannot be true for RSA hyperspheres. We also
demonstrated that the structure factor S�k� must be analytic
at k=0 and that RSA packings for 1�d�6 are nearly
“hyperuniform” �i.e., infinite wavelength density fluctuations
vanish�. Consistent with the recent “decorrelation principle,”
we find that pair correlations markedly diminish as the space
dimension increases up to six.

In Appendix A, we obtained kissing number statistics for
saturated RSA configurations on the surface of a
d-dimensional sphere for dimensions 2�d�5 and compared
to the maximal kissing numbers in these dimensions. The
discrepancy between average RSA kissing numbers and
maximal kissing number was found to increase as the space
dimension increased. Finally, in Appendix B, we determined
the structure factor exactly for the related “ghost” RSA pack-
ing in Rd and showed that its distance from “hyperunifor-
mity” increases as the space dimension increases, approach-
ing a constant asymptotic value of 1 /2.

It is interesting to observe that the best known rigorous
lower bound on the maximal density �32�, derived by con-

FIG. 7. �Color online� Comparison of the lower bound �47� on
the saturation density �with S0=0.05� to our corresponding numeri-
cal data for the first six space dimensions.
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sidering Bravais lattice packings, has the same form as the
density scaling �20� for RSA packings, i.e., for large d, it is
dominated by the term d /2d. The fact that the saturation
density of disordered RSA packings approaches this rigorous
lower bound suggests the existence of disordered packings
whose density surpasses the densest lattice packings in some
sufficiently high dimension. The reason for this is that we
know that there are disordered packings in low dimensions
whose density exceeds that of corresponding saturated RSA
packings in these dimensions, such as maximally random
jammed �MRJ� packings �34–37�. The density of saturated
RSA packings in dimension d is substantially smaller than
the corresponding MRJ value because, unlike the latter pack-
ing, the particles can neither rearrange nor jam. The possi-
bility that disordered packings in sufficiently high dimen-
sions are the densest is consistent with a recent conjectural
lower bound on the density of disordered hard-sphere pack-
ings that was employed to provide the putative exponential
improvement on Minkowski’s 100-year-old bound �16�. The
asymptotic behavior of the conjectural lower bound is con-
trolled by 2−�0.778 65. . .�d.

Challenging problems worth pursuing in future work are
the determinations of analytical constructions of disordered
sphere packings with densities that equal or exceed d /2d for
sufficiently large d or, better yet, provide exponential im-
provement on Minkowski’s lower bound. The latter possibil-
ity would add to the growing evidence that disordered pack-
ings at and beyond some sufficiently large critical dimension
might be the densest among all packings. This scenario
would imply the counterintuitive existence of disordered
classical ground states for some continuous potentials in
such dimensions.
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APPENDIX A: RSA KISSING NUMBER

The number of unit spheres in Rd that simultaneously
touch another unit sphere without overlap is called the kiss-
ing number �also known as the contact number or coordina-
tion number�. The kissing number problem seeks the maxi-
mal kissing number Zmax as a function of d. In dimensions
1�d�3, the maximal kissing numbers are known and cor-
respond to the kissing numbers of the densest sphere pack-
ings, which are Bravais lattices �5,12�: the simple linear lat-
tice for d=1, the triangular lattice for d=2, and the face-
centered-cubic �FCC� lattice for d=3. For d=1 and d=2, the
maximal kissing numbers are exactly 2 and 6, respectively.
Although one dimension is trivial, it is a “miracle” of two
dimensions that six circles can simultaneously touch another
circle without any gaps, and in this sense this unique con-
figuration �up to trivial rotations� is “rigid” because there are

no displacements of the six contacting circles that lead to a
different configuration while maintaining the contacts. This
unique kissing number arrangement is also sixfold symmet-
ric. In three dimensions, it is known that Zmax=12, which is
achieved by the FCC sphere packing, but there are no unique
configurations because gaps exist between contacting
spheres that enable one optimal kissing configuration to be
displaced into a different optimal configuration, and there-
fore optimal configurations need not have any symmetry.
The aforementioned subtleties in the three-dimensional case
was at the heart of a famous debate in 1694 between Newton
�who claimed that Zmax=12� and Gregory �who contended
that Zmax=13�.

One of the generalizations of the FCC lattice to higher
dimensions is the Dd checkerboard lattice, defined by taking
a cubic lattice and placing spheres on every site at which the
sum of the lattice indices is even, i.e., every other site. The
densest packing for d=4 is conjectured to be the D4 lattice,
with a kissing number Z=Zmax=24 �5�, which is also the
maximal kissing number in d=4 �44�. This optimal configu-
ration is referred to as the 24-cell, which is both rigid and
highly symmetric. For d=5, the densest packing is conjec-
tured to be the D5 lattice with kissing number Z=40 �5�. This
kissing configuration is also highly symmetrical. The maxi-
mal kissing numbers Zmax for d=5 is not known, but has the
following bounds: 40�Zmax�46.

Here we determine the distribution of kissing numbers Zi
by placing hyperspheres randomly and sequentially on the
surface of a hypersphere at the origin until the surface is
saturated. We call such a configuration a saturated RSA kiss-
ing number configuration. The average kissing number �Z
 is
given by

�Z
 = �
i=1

ZiP�Zi� , �A1�

where P�Zi� the probability of finding a saturation kissing
number Zi. We begin our simulations by placing a central
hypersphere of unit diameter at the origin of a hypercubic
simulation box of side length 10. A large number of points
npts �npts=2�105 for d=2, npts=106 for 2�d�4, and 107

points for d=5� are uniformly distributed in the region be-
tween the exclusion hypersphere of unit radius surrounding
the hypersphere of unit diameter and the largest hypersphere
that can be inscribed in the simulation box. Each point is
randomly and sequentially radially projected �in the direction
of the hypersphere center� to the surface of the exclusion
hypersphere �via a radial distance rescaling� subject to the
nonoverlap condition, i.e., a projected point is accepted if the
angular separation between it and any other previously ac-
cepted point is greater than or equal to 60 degrees, otherwise
it is rejected. The simulation terminates when all projected
points obey this nonoverlap condition at which time the
exclusion-sphere surface is taken to be saturated, i.e., the
surface of the central sphere of unit diameter is saturated
with contacting spheres of unit diameter. We found that the
number of points npts that we initially distributed in the simu-
lation box before the projection step is sufficiently large to
ensure that the surface of the hypersphere is truly saturated
after the projection step in the dimensions considered.
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Table IV provides kissing number statistics for saturated
RSA configurations for dimensions 2�d�5. For d=2, only
two values of Zi are allowed, 4 and 5. Any kissing number
equal to 3 or less is prohibited because such configurations
are not saturated. On the other hand, a kissing number of 6
has a probability of zero of occurring by random sequential
addition because the configuration corresponding to this op-
timal kissing number is unique. We find that the average
kissing number is approximately equal to 4.5. For d=3, the
average kissing number �Z
=8.341 35. The fact that the
maximal kissing number configurations �Zmax=12� in R3 are
nonunique implies that a configuration of 12 spheres has a
positive �albeit small� probability of occurring via an RSA
process. Nonetheless, we were not able to observe such a
configuration in a total of 106 configurations. The smallest
observed kissing number for d=3 was six, which presumably
is the smallest number required for a saturated packing. The
minimal kissing number configurations for saturation are

related to the following problem: How can n points be dis-
tributed on a unit sphere such that they maximize the mini-
mum distance between any pair of points? For six points, the
solution to his problem is well known: they should be placed
at the vertices of an inscribed regular octahedron. Since the
minimum angular separation between any pair of points in
this highly symmetric case is 90 degrees, the associated kiss-
ing number configuration is saturated. Note that highest kiss-
ing number of 18 reported for d=4 is substantially smaller
than the maximal kissing number Zmax=24. Apparently,
achieving kissing numbers that approach those of the optimal
highly symmetric, rigid 24-cell configuration by a random
sequential addition is effectively impossible. Therefore, it is
plausible that the possible configurations corresponding to
kissing numbers of 19–23 are also characterized by high de-
gree of symmetry �and possibly rigidity� based upon the ab-
sence of such kissing numbers. The fact that the average
kissing number for d=5 is substantially lower than the high-
est known kissing number of 40 is presumably related to the

TABLE IV. Kissing number statistics for saturated RSA configurations on the surface of a d-dimensional
sphere for dimensions 2�d�5. Here Zi is the integer-valued saturation kissing number, P�Zi� the probability
of finding a saturation kissing number Zi, �Z
 the average saturation kissing number. In each dimension, the
statistics are determined from 100 000 configurations. We also include the largest known kissing numbers
Zmax.

Dimension, d Kissing Number, Zi Probability, P�Zi� �Z
 Zmax

2 4 0.515 680 4.484 32 6

5 0.484 320

3 6 0.001 400 8.349 57 12

7 0.091 020

8 0.502 230

9 0.367 400

10 0.037 860

11 0.000 090

4 11 0.001 840 13.805 30 24

12 0.055 960

13 0.302 440

14 0.435 910

15 0.183 060

16 0.020 260

17 0.000 520

18 0.000 010

5 17 0.000 030 21.467 65 40

18 0.001 530

19 0.024 510

20 0.146 930

21 0.341 250

22 0.329 250

23 0.132 350

24 0.022 290

25 0.001 810

26 0.000 050
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high symmetries required to achieve high Z values in this
dimension.

Our data for the average RSA kissing number over the
range of considered dimensions is fit very well by the fol-
lowing quadratic expression in d:

�Z
 = b0 + b1d + b2d2, �A2�

where b0=2.744 88, b1=−1.013 54, and b2=0.950 395, and
the correlation coefficient is 0.9999. The data and this qua-
dratic fit function are depicted in Fig. 8. If this expression
persisted for large d, it would predict that the average RSA
kissing number asymptotically grows as d2.

APPENDIX B: STRUCTURE FACTOR FOR
GHOST RSA PACKINGS

For ghost RSA packings of spheres of diameter D in Rd,
the pair correlation function in the infinite-time limit is given
exactly for any space dimension d by the following expres-
sion �14�:

g2�r� =
��r − D�

1 − �2�r;D�/2
, �B1�

where ��x� is the unit step function, equal to zero for x�0
and unity for x�1, and �2�r ;D� is the intersection volume of
two spheres of radius D whose centers are separated by the
distance r divided by the volume of a sphere of radius D.
Expressions for the scaled intersection volume �2�r ;D� for
any d are known exactly; see Refs. �16,25� for two different
representations. The scaled intersection volume �2�r ;D�
takes its maximum value of unity at r=0 and monotonically
decreases with increasing r such that it is nonzero for 0�r
�2D, i.e., it has compact support. The corresponding total
correlation h�r�=g2�r�−1 is given by

h�r� = − ��D − r� +
�2�r;D�

2 − �2�r;D�
��r − D���2D − r� .

�B2�

We see that h�r� can be written as a sum of two contribu-
tions: the pure step function contribution −��D−r�, which

has support for 0�r�D, and a contribution involving
�2�r ;D�, which has support D�r�2D. Substitution of �B2�
into �16� yields the structure factor to be

S�k� = SSF�k� + SEX�k� , �B3�

where

SSF�k� = 1 − 2d/2��1 + d/2�
Jd/2�kD�
�kD�d/2 �B4�

is the structure factor for the step function contribution
−��D−r�, and

SEX�k� = 2d/2��1 + d/2�

D

2D

rd−1 �2�r;D�
2 − �2�r;D�

J�d/2�−1�kr�

�kr��d/2�−1 dr

�B5�

is the contribution to S�k� in excess to the structure factor for
the step function. Here we have used the fact that the
infinite-time density is �=1/2d. For odd dimensions, SEX�k�
can be obtained explicitly in terms of sine, cosine, sine inte-
gral and cosine integral functions. We do not explicitly
present these expressions here but instead plot S�k�, defined
by �B3�, for various dimensions in Fig. 9. For d=1, 3, and
11, S�k=0� is given by 0.150 728, 0.290 134, and 0.452 217,
respectively, and therefore not only is the ghost RSA packing
not hyperuniform, as expected, but its distance from hyper-
uniformity increases as the space dimension d increases, as-
ymptotically approaching the value of 1/2. This should be
contrasted with the standard RSA packing in Rd, which we
have shown is nearly hyperuniform.

In the limit d→
, the excess contribution to the structure
factor has the limiting form

SEX�k� →
1

2
�2d/2��1 + d/2�Jd/2�kD�

�kD�d/2 	2

=
1

2
�1 − SSF�k��2.

�B6�

The resulting structure factor in this asymptotic limit is given
by

FIG. 8. �Color online� Our numerical data �black circles� for the
average kissing number �Z
 as a function of dimension d and the
quadratic fit function �A2� �solid curve�.

FIG. 9. �Color online� The structure factor S�k� versus kD for
various space dimensions �d=1, 3, and 11� for ghost RSA packings.
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S�k� = SSF�k� + SEX�k� =
1

2
�1 + SSF

2 �k��, d → 
 .

�B7�

It has the following small-k expansion:

S�k� =
1

2
+

1

8�d + 2�2k4 −
1

16�d + 2�2�d + 4�
k6

+ O�k8�, k → 0. �B8�

The asymptotic result �B6� is easily obtained by utilizing the
fact that in the limit d→
, �2�r ;D� / �2−�2�r ;D��

→�2�r ;D� /2 �16�. Substitution of this result into the general
relation �B5� and recognizing that the lower limit D of this
integral can be replaced by 0 in the limit d→
 yields the
asymptotic form

SEX�k� →
�̃2�k;D�
2v1�D�

, �B9�

where �̃2�k ;D� denotes the Fourier transform of �2�r ;D� and
v1�D� is the volume of a sphere of radius D �cf. �2��. The
quantity �̃2�k ;D� is known explicitly in any dimension �25�
and substitution of this result into �B9� immediately yields
�B6�.
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